Pseudoprocesses Related to Space-Fractional Higher-Order Heat-Type Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudoprocesses governed by higher-order fractional differential equations

We study here a heat-type differential equation of order n greater than two, in the case where the time-derivative is supposed to be fractional. The corresponding solution can be described as the transition function of a pseudoprocess Ψn (coinciding with the one governed by the standard, non-fractional, equation) with a time argument Tα which is itself random. The distribution of Tα is presente...

متن کامل

Strichartz Type Estimates for Fractional Heat Equations

We obtain Strichartz estimates for the fractional heat equations by using both the abstract Strichartz estimates of Keel-Tao and the HardyLittlewood-Sobolev inequality. We also prove an endpoint homogeneous Strichartz estimate via replacing L∞x (R ) by BMOx(R) and a parabolic homogeneous Strichartz estimate. Meanwhile, we generalize the Strichartz estimates by replacing the Lebesgue spaces with...

متن کامل

On boundary value problems of higher order abstract fractional integro-differential equations

The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...

متن کامل

Higher order numerical methods for solving fractional differential equations

In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is ...

متن کامل

Eigenvalue Problem of Nonlinear Semipositone Higher Order Fractional Differential Equations

and Applied Analysis 3 Lemma 2.1 see 8, 9 . 1 If x ∈ L1 0, 1 , ρ > σ > 0, and n ∈ N, then IIx t I x t , DtIx t Iρ−σx t , 2.4 DtIx t x t , d dtn Dtx t Dt x t . 2.5 2 If ν > 0, σ > 0, then Dttσ−1 Γ σ Γ σ − ν t σ−ν−1. 2.6 Lemma 2.2 see 8 . Assume that x ∈ L1 0, 1 and μ > 0. Then IDtx t x t c1tμ−1 c2tμ−2 · · · cntμ−n, 2.7 where ci ∈ R i 1, 2, . . . , n , n is the smallest integer greater than or eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Analysis and Applications

سال: 2014

ISSN: 0736-2994,1532-9356

DOI: 10.1080/07362994.2014.911107